Рассмотрен подробный расчет системы отопления дома со всеми особенностями и сложностями, перечислены источники отопления, которые чаще всего являются вспомогательными, а также подробно рассмотрена однотрубная и двухтрубная система отопления.
Содержание
- 1 Современные источники отопления дома
- 2 Рассчитаем приходную часть теплового баланса
- 3 Гидравлический расчет системы отопления: цели и задачи
- 4 Особенности проектирования
- 5 Меры по сокращению потерь теплоты с поверхности трубопроводов
- 6 Потери тепла с поверхности воды в бассейне (с зеркала испарения) определяются по формуле:
- 7 Выводы и полезное видео по теме
- 8 Виды тепловых нагрузок
- 9 Считаем расход теплоты по квадратуре
- 10 Объем системы отопления
- 11 Виды циркуляционных насосов
- 12 Характерности расчета СВО
Современные источники отопления дома
Электрические нагревательные приборы, к которым относятся тепловентиляторы, инфракрасные обогреватели, масляные радиаторы, тепловые пушки, «теплые полы» и другие, а также камины и печи чаще всего используют как вспомогательные источники отопления. Частный дом с системой воздушного отопления – чрезвычайная редкость.
Следует заметить, что есть общепринятые нормы удельной мощности котла в зависимости от климатических зон:
- W = 1,5 – 2,0 кВт – в Северных районах.
- W = 1,2 – 1,5 кВт – в Центральных районах;
- W = 0,7 – 0,9 кВт – в Южных районах;
С помощью формулы W кот. = S*W / 10 можно рассчитать мощность котла.
Расчет системы отопления дома включает в себя расчет мощности, при проведении которого следует учитывать следующие параметры: (См. также: Расчет котла отопления)
- S — общая площадь помещения, которое отапливается;
- W – мощность котла (удельная) на 10 м3, которая определяется с учетом климатических особенностей региона.
Совет! С целью упрощения системы расчетов можно применить среднее значение удельной мощности котла (W), которое равно единице. Следовательно, нормативная мощность котла принимается из расчета 10 кВт на 100м2 помещения, которое отапливается. Например:
1) S = 100 м2 – площадь помещения, которое отапливается;
2) W = 1,2 кВт – удельная мощность Центральных районов.
W кот. = 100*1,2/10=12 кВт.
Рисунок 2: Проектирование системы отопления
Рассчитаем приходную часть теплового баланса
Определим количество тепла, поступающее в реактор с исходными реагентами:
где Срi – изобарные теплоемкости исходных реагентов;
Gi – мольный поток i-того реагента;
Тi – температура исходных реагентов;
а) рассчитаем для циклогексана:
б) рассчитаем для кислорода:
в) рассчитаем для бензола:
г) рассчитаем для азота:
Определим количество тепла, которое выделяется или поглощается в результате химической реакции:
а) для основной реакции:
или 67915,59
б) для побочной реакции:
или 651,74
Так как тепло поглощается во всех реакциях (основной и побочной), получаем:
Так как >0, то реакция экзотермическая и данное значение ставим в приход теплового баланса.
Гидравлический расчет системы отопления: цели и задачи
Практическая цель такого расчета — это выбор внутренних Д вн труб и установление перепада напора в сети, для профессионального подбора электронасоса, способного обеспечить надежную циркуляцию теплоносителя.
Диаметр труб обязан обеспечить радиатор таким объемом греющей воды, которое требуется ему для функционирования с рабочей производительностью. Одновременно с этим принимается скорость циркуляции теплоносителя, она должна находится в промежутке от 0.2 до 0.5 л/с, а разница температур воды на входе/выходе из прибора отопления — 15-20 С.
Чем дальше размещена батарея от котла, тем большую дистанцию обязана пройти жидкость и, следовательно, тем более значимое гидросопротивление станет мешать ее продвижению. Для выполнения корректировки скорости течения воды необходимо использовать трубы разного диаметра.
Особенности проектирования
Все расчёты водяных тёплых полов должны быть произведены предельно тщательно. Любые недочёты при проектировании могут быть исправлены только в результате полного или частичного демонтажа стяжки, что способно не только повредить внутреннюю отделку в помещении, но и приведёт к значительным затратам времени, сил и средств.
Рекомендуемые температурные показатели поверхности пола в зависимости от вида помещения составляют:
- жилое помещение — 29 °C;
- участки около наружных стен — 35 °C;
- ванные комнаты и зоны с высокой влажностью — 33 °C;
- под напольное покрытие из паркета — 27 °C.
Короткие трубы предполагают использование более слабого циркуляционного насоса, что делает систему экономически выгодной. Контур с диаметром 1,6 см не должен быть длиннее 100 метров, а для труб с диаметром 2 см максимальная длина составляет 120 метров.
Таблица решений для выбора системы водяного теплого пола
Меры по сокращению потерь теплоты с поверхности трубопроводов
Энергосбережение при транспортировке тепловой энергии в первую очередь зависит от качества тепловой изоляции. Главными энергосберегающими мероприятиями, уменьшающими потери теплоты с поверхности трубопроводов, являются:
изоляция неизолированных участков и восстановление целостности существующей теплоизоляции;
восстановление целостности существующей гидроизоляции;
нанесение покрытий, состоящих из новых теплоизоляционных материалов, либо использование трубопроводов с новыми типами теплоизоляционных покрытий;
изоляция фланцев и запорной арматуры.
Изоляция неизолированных участков является первоочередным энергосберегающим мероприятием, поскольку тепловые потери с поверхности неизолированных трубопроводов очень велики по сравнению с потерями с поверхности изолированных трубопроводов, а стоимость работ по нанесению теплоизоляции относительно невелика.
При нарушении целостности слоя гидроизоляционных покрытий происходит увеличение влажности теплоизоляции. Поскольку теплопроводность воды в диапазоне температур работы тепловой сети X =
0,6 -ь 0,7 Вт/(м К), а теплопроводность теплоизоляционных материалов обычно составляет А,из = 0,035 -4-0,05 Вт/(м К), то увлажнение материала может увеличить его теплопроводность в несколько раз (на практике более чем в 3 раза).
Увлажнение теплоизоляции способствует разрушению труб из-за коррозии их внешней поверхности, в результате чего срок службы трубопроводов сокращается в несколько раз. Поэтому на металлическую поверхность трубы наносится антикоррозионное покрытие, например, в виде силикатных эмалей, изола и др.
В настоящее время широко внедряются теплопроводы типа «труба в трубе» с пенополиуретановой изоляцией в гидрозащитной оболочке с дистанционным контролем целостности изоляции. Такая конструкция предусматривает предварительную изоляцию пенополиуретаном и заключение в полиэтилен не только труб, но и всех компонентов системы (шаровой арматуры, температурных компенсаторов и др.). Теплопроводы этой конструкции прокладываются под землей бесканально и обеспечивают существенное энергосбережение за счет предварительного изготовления отдельных изолированных элементов в заводских условиях и высокой тепло- и влаго- непроницаемости. Для успешной эксплуатации предварительно изолированных трубопроводов необходимо высокое качество их монтажа. При этом они могут функционировать без замены до 30 лет.
Профилактическими мерами, позволяющими сокращать потери теплоты с поверхности трубопроводов, являются: предотвращение затопления трубопроводов в результате установки дренажей (при их отсутствии) и содержания их в должном порядке; вентиляция проходных и непроходных каналов для предупреждения попадания конденсата на поверхность теплоизоляции.
В качестве еще одной меры, снижающей потери теплоты с поверхности трубопроводов, служит переход системы теплоснабжения на пониженный температурный график (с 150/70 на 115/70 или 95/70 °С/°С), что приводит к снижению разности температур теплоносителя в подающем трубопроводе и окружающей среды. Однако э го потребует большего расхода теплоносителя через систему, чтобы передать потребителю требуемое количество теплоты. Для этого нужно увеличить затраты электроэнергии на привод насосов. Поэтому для определения целесообразности проведения рассматриваемого мероприятия необходим технико-экономический расчет.
Потери тепла с поверхности воды в бассейне (с зеркала испарения) определяются по формуле:
Q=(tпов-tв)хF/R где tпов – температура нагретой поверхности воды, ºС; F – площадь поверхности воды, м2; R – термическое сопротивление теплоотдаче от нагретой поверхности, . R=(1.4+v) где v – скорость движения воздуха в помещении, ºС. В случае рассмотрения варианта уличного размещения бассейна возможно придется применить другую формулу (например как для наружных инж. сетей надземной прокладки). Однако стоит обратить внимание, что наряду с конвективной составляющей при уличном размещении может быть велика лучистая составляющая теплообмена.
Ниже приведена статья из журнала “АВОК”, которая поможет Вам самостоятельно определить, сколько тепла нужно для обогрева Вашего дома
Выводы и полезное видео по теме
В видео можно ознакомиться с примером расчета водяного отопления, который осуществляется средствами программы Valtec:
Гидравлические расчеты лучше всего осуществлять с помощью специальных программ, которые гарантируют высокую точность вычислений, учитывают все нюансы конструкции.
Вы специализируетесь на выполнении расчета систем отопления с использованием воды в качестве теплоносителя и хотите дополнить нашу статью полезными формулами, поделиться профессиональными секретами?
А может хотите акцентировать внимание на дополнительных расчетах или указать на неточность в наших вычислениях? Пишите, пожалуйста, свои замечания и рекомендации в блоке под статьей.
Похожие публикации
Виды тепловых нагрузок
При расчетах учитывают средние сезонные температуры
Тепловые нагрузки носят разный характер. Есть некоторый постоянный уровень теплопотерь, связанный с толщиной стены, конструкцией кровли. Есть временные – при резком снижении температуры, при интенсивной работе вентиляции. Расчет всей тепловой нагрузки учитывает и это.
Сезонные нагрузки
Так называют теплопотери, связанные с погодой. Сюда относят:
- разницу между температурой наружного воздуха и внутри помещения;
- скорость и направление ветра;
- количество солнечного излучения – при высокой инсоляции здания и большом количестве солнечных дней даже зимой дом охлаждается меньше;
- влажность воздуха.
Сезонную нагрузку отличает переменный годовой график и постоянный суточный. Сезонная тепловая нагрузка – это отопление, вентиляция и кондиционирование. К зимним относят 2 первых вида.
В формулах используют не кратковременные резкие изменения температуры и влажности – максимальные, а усредненные: значения, наблюдаемые за 5 самых холодных дней из 5 самых холодных зим за 50 лет.
Постоянные тепловые
Промышленное холодильное оборудование выделяет большое количество тепла
К круглогодичным относят горячее водоснабжение и технологические аппараты. Последние имеет значение для промышленных предприятий: варочные котлы, промышленные холодильники, пропарочные камеры выделяют гигантское количество тепла.
В жилых зданиях нагрузка на горячее водоснабжение становится сравнима с отопительной нагрузкой. Величина эта мало изменяется в течение года, но сильно колеблется в зависимости от времени суток и дня недели. Летом расход ГСВ уменьшается на 30%, так как температура воды в холодном водопроводе выше на 12 градусов, чем зимой. В холодное время года потребление горячей воды растет, особенно в выходные дни.
Сухое тепло
Комфортный режим определяется температурой воздуха и влажностью. Эти параметры рассчитывают, руководствуясь понятиями сухого и скрытого тепла. Сухое – это величина, измеряемая специальным сухим термометром. На нее воздействует:
- остекление и дверные проемы;
- солнце и тепловые нагрузки на зимнее отопление;
- перегородки между комнатами с разной температурой, полы над пустым пространством, потолки под чердаками;
- трещины, щели, зазоры в стенах и дверях;
- воздуховоды вне отапливаемых зон и вентиляция;
- оборудование;
- люди.
Полы на бетонном фундаменте, подземные стены при расчетах не учитываются.
Скрытое тепло
Влажность помещения повышает температуру внутри
Этот параметр определяет влажность воздуха. Источником выступает:
- оборудование – нагревает воздух, снижает влажность;
- люди – источник влажности;
- потоки воздуха, проводящие сквозь трещины и щели в стенах.
Обычно вентиляция не влияет на сухость помещения, однако есть исключения.
Считаем расход теплоты по квадратуре
Для приблизительной прикидки отопительной нагрузки обычно используется простейший тепловой расчет: берется площадь здания по наружному обмеру и умножается на 100 Вт. Соответственно, потребление тепла дачным домиком 100 м² составит 10000 Вт или 10 кВт. Результат позволяет подобрать котел с коэффициентом запаса 1.2—1.3, в данном случае мощность агрегата принимается равной 12.5 кВт.
Мы предлагаем выполнить более точные вычисления, учитывающие расположение комнат, количество окон и регион застройки. Итак, при высоте потолков до 3 м рекомендуется использовать следующую формулу:
Расчет ведется для каждого помещения отдельно, затем результаты суммируются и умножаются на региональный коэффициент. Расшифровка обозначений формулы:
- Q – искомая величина нагрузки, Вт;
- Sпом – квадратура комнаты, м²;
- q – показатель удельной тепловой характеристики, отнесенный к площади помещения, Вт/м²;
- k – коэффициент, учитывающий климат в районе проживания.
Для справки. Если частный дом расположен в полосе умеренного климата, коэффициент k принимается равным единице. В южных регионах k = 0.7, в северных применяются значения 1.5—2.
В приближенном подсчете по общей квадратуре показатель q = 100 Вт/м². Подобный подход не учитывает расположение комнат и разное количество световых проемов. Коридор, находящийся внутри коттеджа, потеряет гораздо меньше тепла, чем угловая спальня с окнами той же площади. Мы предлагаем принимать величину удельной тепловой характеристики q следующим образом:
- для помещений с одной наружной стеной и окном (или дверью) q = 100 Вт/м²;
- угловые комнаты с одним световым проемом – 120 Вт/м²;
- то же, с двумя окнами – 130 Вт/м².
Как правильно подбирать значение q, наглядно показано на плане здания. Для нашего примера расчет выглядит так:
Q = ( х 130 + 21 х 120 + 5 х 100 + 7 х 100 + 6 х 100 + х 130 + 21 х 120) х 1 = 10935 Вт ≈ 11 кВт.
Как видите, уточненные вычисления дали другой результат – по факту на отопление конкретного домика 100 м² израсходуется на 1 кВт тепловой энергии больше. Цифра учитывает расход теплоты на подогрев наружного воздуха, проникающего в жилище сквозь проемы и стены (инфильтрацию).
Объем системы отопления
Я об этом писал в другой статье. Теплоноситель, нагретый котлом, остается в доме, а вместе ним и тепло, полученное от сгорания топлива.
Чем больше объем системы, тем дольше работает котел при первом пуске, но тем дольше вода, циркулирующая по трубам, остывает, т.е. котел долго не работает. В системах с небольшим содержанием воды, котел будет более часто включаться – выключаться.
Рассмотрим для примера отопительный цикл, время неважно, внимание уделяем сравнению работы котлов.
Думаю, что можно даже говорить о преимуществе систем с большой емкостью, потому что они позволяют котлу выбрать оптимальный режим работы. Максимальный КПД котел показывает при работе на номинальной мощности. В системах с небольшим объемом это будет затруднительно.
Тем, кто является приверженцем систем с малым объемом воды, будет интересно узнать, что наблюдается обратная тенденция – тенденция к увеличению объема систем отопления. Это объясняется появлением и ростом популярности новых источников тепла: твердого топлива, солнечной энергии, энергии земли. Теплогенераторы, работающие на указанных видах энергии отличаются очень длинными циклами и очень «любят» воду. Как известно, для этих источников тепла, а тем более, когда они используются совместно, устанавливаются теплоаккумуляторы или буферные емкости. Думаю, каждый уже слышал о них.
Обсудить эту статью, оставить отзыв в Google+ | Вконтакте | Facebook
Виды циркуляционных насосов
Конструкция типового циркуляционного насоса состоит из корпуса, изготовленного из нержавеющего металла, керамического ротора и вала, оснащенного колесом с лопастями. Ротор приводится в действие с помощью электродвигателя. Подобная конструкция обеспечивает забор воды с одной стороны устройства и ее нагнетание в трубопроводы со стороны выхода. Движение воды по системе происходит за счет центробежной силы. Таким образом, преодолевается сопротивление, возникающее на отдельных участках труб отопления.
Все подобные устройства разделяются на два типа – сухой и мокрый. В первом случае отсутствует контакт ротора с перекачиваемой водой. Всю его рабочую поверхность от электродвигателя отделяют специальные защитные кольца, тщательно отполированные и подогнанные между собой. Работа насосов сухого типа считается более эффективной, однако в процессе эксплуатации возникает довольно сильный шум. В связи с этим, для их установки оборудуются отдельные изолированные помещения.
При выборе таких моделей следует учитывать наличие воздушных завихрений, образующихся во время работы. Под их воздействием в воздух поднимается пыль, которая может легко попасть внутрь устройства и нарушить герметичность уплотнительных колец. Это приведет к выходу из строя всей системы. Поэтому в качестве защиты между кольцами присутствует тончайшая водяная пленка. Она обеспечивает смазку, предотвращая преждевременный износ колец.
Циркуляционные насосы мокрого типа имеют отличительную особенность в виде ротора, постоянно находящегося в перекачиваемой жидкости. Место расположения электродвигателя надежно отделено герметичным металлическим стаканом. Данные устройства как правило используются в небольших отопительных системах. Они значительно меньше шумят при работе и не требуют дополнительных мероприятий по техническому обслуживанию. Обычно такие насосы периодически ремонтируются и настраиваются до нужных параметров.
Существенным недостатком этих насосов считается низкий коэффициент полезного действия из-за недостаточной герметичности гильзы, разделяющей статор и теплоноситель
Выбирая нужную модель, следует обращать внимание на то, чтобы в насосе был не только мокрый ротор, но и защищенный статор
Последние поколения циркуляционных насосов практически полностью автоматизированы. Умная автоматика обеспечивает своевременное переключение уровня обмоток и существенно увеличивает производительность устройства. Такие модели чаще всего используются при стабильном или незначительно изменяющемся расходе воды. Благодаря ступенчатой регулировке, появилась возможность выбора наиболее оптимальных режимов работы и существенной экономии электроэнергии.
Характерности расчета СВО
После нахождения критерия ТП переходят к гидравлическому расчету (дальше – ГР). На его основе получают информацию о следующих показателях:
- оптимальном диаметре труб, который при изменениях давления будет способен пропускать необходимое количество носителя тепла;
- расходе носителя тепла на конкретном участке;
- скорости движения воды;
- значении удельного сопротивления.
В начале расчетов для упрощения вычислений изображают пространственную схему системы, на которой все ее детали располагают параллельно один к одному.
Рассмотрим важные этапы расчетов отопления водяного типа.
ГР основного циркуляционного кольца
Методика расчета ГР базируется на предположении, что во всех стояках и ветвях температурные скачки одинаковые. Метод расчета следующий:
- На изображенной схеме, имея в виду потери тепла, наносят тепловые нагрузки, которые действуют на радиаторы, стояки.
- Исходя из схемы, подбирают основное циркуляционное кольцо (дальше – ГЦК). Характерность этого кольца в том, что в нем циркуляционное давление на единицу длины кольца принимает самое меньшее значение.
- ГЦК разбивают на участки, имеющие частые расход тепла. Для любого участка указывают номер, нагрузку тепла, диаметр и длину.
В вертикальной системе однотрубного типа в качестве ГЦК берется то кольцо, через которое проходит наиболее нагруженный стояк при тупиковом или попутном движении воды по магистрали. Подробнее об увязывании циркуляционных колец в системе с одной трубой и выборе ключевого мы утверждали в следующей статье.
Отдельно уделили свое внимание порядку проведения расчетов, применяя для наглядности определенный пример.
В горизонтальной системе однотрубного типа ГЦК должно иметь самое меньшее циркуляционное давление да единицу длины кольца. Для систем с гравитационной циркуляцией ситуация аналогична. При ГР стояков вертикальной системы однотрубного типа проточные, проточно-регулируемые стояки, имеющие в собственном составе унифицированные узлы, рассматривают в качестве единого контура.
Для стояков с замыкающими участками делают зонирование, имея в виду распределение воды в водопроводе каждого приборного узла. Водный расход на заданном участке вычисляется по формуле:
В выражении буквенные символы принимаю следующие значения:
- Qkont – тепловая нагрузка контура;
- ?1, ?2 – добавочные табличные коэффициенты, учитывающие отдачу тепла в помещении;
- c – теплоемкость воды, равна 4,187;
- tr – температура воды в подающем магистрали;
- t0 – температура воды в обратной магистрали.
Определив диаметр и кол-во воды, предстоит выяснить скорость ее движения и значение удельного сопротивления R. Все расчеты комфортнее всего реализовать при помощи специализированных программ.
ГР второстепенного циркуляционного кольца
После ГР основного кольца формируют давление в малом циркуляционном кольце, образующееся через ближние его стояки, если учесть, что потери давления могут разниться на не больше чем 15 % при тупиковой схеме и не больше, чем на 5%, при попутной. Если нереально увязать потери давления, устанавливают дроссельную шайбу, диаметр которой вычисляют с применением программных методов.
Расчет радиаторных батарей
Вернемся к плану дома, расположенного выше. Путем вычислений было выявлено, что для поддерживания теплового баланса потребуется 16 кВт энергии.
В рассматриваемом доме 6 помещений различного назначения – гостевая, туалет, кухня, спальная комната, коридор, прихожая. Исходя из габаритов конструкции, можно определить объем V:
Дальше необходимо найти кол-во мощности тепла на один м 3 . Для этого Q нужно разделить на найденный объем, другими словами: Дальше нужно установить, сколько мощности тепла потребуется для одной комнаты.
На схеме площадь любого помещения уже рассчитана.
- туалет – ;
- гостевая – ;
- кухня – ;
- спальная комната – ;
- коридор – ;
- прихожая – 5.8?2.5=14.5.
В расчетах обязательно возьмите во внимание помещения, в которых батарей отопления нет, к примеру, коридор.
Определим нужное кол-во тепла для любой комнаты, помножив объем комнаты на критерий Р. Получаем необходимую мощность:
- для туалета – Вт;
- для гостиной комнаты – Вт;
- для кухонной комнаты – Вт;
- для спальной комнаты – Вт;
- в коридор – Вт;
- в прихожую – 14.5?133=1889 Вт.
Приступаем к расчету радиаторных батарей. Будем применять отопительные приборы из алюминия, высота которых составляем 60 см, мощность при температуре 70 равна 150 Вт.
Подсчитаем нужное кол-во радиаторных батарей:
- туалет – 1392/150=10;
- гостевая – 4599/150=31;
- кухня – 3136/150=21;
- спальная комната – 3435/150=23;
- прихожая – 1889/150=13.
Более детально все данные вопросы освещаются в следующих наших статьях: