Снеговая нагрузка на кровлю: тонкости расчета при проектировании

Нагрузки, действующие на несущую конструкцию скатных крыш.

Расчет стропил

Если вы строите дом самостоятельно, и у вас нет достаточных знаний в области инженерии и архитектуры, то расчет нагрузки на крышу можно заказать в специализированной организации или у частного проектировщика. Если же постройка не столь требовательна к техническим расчетам, то все можно сделать своими собственными силами. Как правильно рассчитать длину стропил? Она зависит от углов скатов крыши и от ее формы. Сперва следует ознакомиться с нормативной документацией. Для этого потребуется СНиП и приложенные карты к изменениям в этом документе (они были обновлены в 2008 году). Оптимальный шаг между стропилами рассчитывают исходя из возможного предела расстояния, после которого конструкции разрушится полностью или частично. Расчет снеговой нагрузки на кровлю … Расчет снеговой нагрузки на кровлю … Расчет снеговой нагрузки на кровлю … Расчет снеговой нагрузки на кровлю … При частичном разрушении выходят из строя различные элементы и узлы системы. Так, допустимый прогиб элементов конструкции стропил, ног, прогонов или раскосов не должен быть более 0,5% длины прогона или пролета. Полное разрушение наступает при превышении максимально допустимых нагрузок, поэтому крайне важно сделать правильный расчет стропил изначально. Рассчитывать необходимо оба варианта, так как важно знать пределы стойкости стропильной системы.

Снеговая нагрузка.

Точную нагрузку от веса снегового покрова, требуемую для расчета несущей способности стропильных систем в конкретном месте строительства, нужно выяснить в районных строительных организациях или установить по СНиП «Нагрузки и воздействия», а конкретно, по картам, вложенным в «Изменения к СНиП » . Необходимо обратить ваше внимание на то, что изменения к СНиПу вступили в силу с 2008 г. и в них переизданы ряд карт, в том числе и карта районирования снегового покрова. «Изменения», это практически новый СНиП, заменяющий СНиП 1985 года. В новой редакции СНиП границы районирования не совпадают со старой картой, а расчет нагрузки от веса снегового покрова гармонизирован со структурой Европейских норм.

На рис. 3 показаны нагрузки от веса снегового покрова для расчета по второй группе предельных состояний (с коэффициентом 0,7). Полная снеговая нагрузка (без коэффициента 0,7) по карте районирования, приведена в таблице 1.

Расчет снеговой нагрузки на кровлю … Расчет снеговой нагрузки на кровлю … Снеговая нагрузка на кровлю: расчет и …

Расчетный вес снегового покрова Q на 1 м² горизонтальной поверхности земли (таблица 1)

Снеговые районы Российской Федерации

1

2

3

4

5

6

7

8

Q , кПа (кг/м²)

0,8 (80)

1,2 (120)

1,8 (180)

2,4 (240)

3,2 (320)

4,0 (400)

4,8 (480)

5,6 (560)

Что такое ветровая нагрузка

Переток воздушных масс вдоль поверхности земли происходит с разной скоростью. Натыкаясь на какое-либо препятствие, кинетическая энергия ветра преобразуется в давление, создавая ветровую нагрузку. Это усилие может ощутить любой человек, двигающийся навстречу потоку. Создаваемая нагрузка зависит от нескольких факторов:

  • скорость ветрового потока;
  • плотность воздушной струи,— при повышенной влажности, удельный вес воздуха становится больше, соответственно, возрастает величина переносимой энергии;
  • форма стационарного объекта.

В последнем случае на отдельные части строительного сооружения действуют силы, направленные в разные стороны, например:

  1. На вертикальную стену действует так называемое лобовое усилие, стремящееся сдвинуть объект с места. Противостоять этому усилию помогают несколько конструктивных решений:
  2. На крышу, кроме горизонтальных усилий (вдавливающих), действуют и вертикальные силы, образующиеся от разделения воздушного потока при ударе о стену. Вектор воздушного потока стремится поднять крышу, оторвать её от стен.
  3. Совокупность всех этих вихревых потоков создают ветровую нагрузку не только на крупные элементы здания, но распространяет свои влияния на все элементы строительного сооружения, — двери, окна, кровлю, водостоки, антенну, дымоход.

Мощность создаваемых усилий обычно пропорциональна квадрату расчётной величины скорости ветра.

Классификация нагрузок

    1. Основные:
      • постоянные нагрузки – вес самих стропильных конструкций и крыши,
      • длительные нагрузки – снеговые и температурные нагрузки с пониженным расчетным значением (используются при необходимости учета влияния длительности нагрузок, при проверке на выносливость),
      • переменное кратковременное влияние — снеговое и температурное воздействие по полному расчетному значению.
    2. Дополнительные – ветровое давление, вес строителей, гололедные нагрузки.
    3. Форс-мажорные – взрывы, сейсмоактивность, пожар, аварии.

по двум предельным состояниям:

      • Предел, при котором происходит разрушение конструкции. Максимально возможные нагрузки на прочность конструкции стропил должны быть меньше предельно допустимых.
      • Предельное состояние, при котором возникают прогибы и деформация. Возникающий прогиб системы при нагрузке должен быть менее предельно возможного.

Расчет снеговых нагрузок на крышу

Ms = Q × Ks × Kc

  • Ms – снеговая нагрузка;
  • Q – масса снегового покрова, покрывающая 1м 2 плоской горизонтальной поверхности крыши.

Таблица определения снеговой нагрузки местности

Снеговой районIIIIIIIVVVIVIIVIII
Вес снегового покрытия Sg (кгс/м2)80120180240320400480560

Карта зон снегового покрова территории РФВетровая нагрузка

Расчётное значение средней составляющей ветровой нагрузки на высоте z над поверхностью земли определяется по формуле: W=Wo*k , где Wo-нормативное значение ветровой нагрузки, принимаемое по таблице ветрового района РФ, k-коэффициент учитывающий изменение ветрового давления по высоте, определяется по таблице, в зависимости от типа местности.

Коэффициент k, учитывающий изменение ветрового давления по высоте z, определяется по табл. 6 в зависимости от типа местности. Принимаются следующие типы местности:

  • А – открытые побережья морей, озер и водохранилищ, пустыни, степи, лесостепи, тундра;
  • B – городские территории, лесные массивы и другие местности, равномерно покрытые препятствиями высотой более 10 м;
  • С – городские районы с застройкой зданиями высотой более 25 м.

Сооружение считается расположенным в местности данного типа, если эта местность сохраняется с наветренной стороны сооружения на расстоянии 30h – при высоте сооружения h до 60 м и 2 км – при большей высоте.

Таблица 6

Высота z, мКоэффициент k для типов местности
ABC
≤ 50,750,500,40
101,000,650,40
201,250,850,55
401,501,100,80
601,701,301,00
801,851,451,15
1002,001,601,25
1502,251,901,55
2002,452,101,80
2502,652,302,00
3002,752,502,20
3502,752,752,35
≥ 4802,752,752,75
Примечание. При определении ветровой нагрузки типы местности могут быть различными для разных расчетных направлений ветра.

Таблица снеговых и ветровых районов по городам России

Субъект федерацииГородСнеговой районВетровой район
АдыгеяМайкоп21
Алтайский крайБарнаул43
Алтайский крайБийск41
Алтайский крайРубцовск33
Амурская областьБлаговещенск13
Архангельская областьАрхангельск42
Архангельская областьСеверодвинск42
Астраханская областьАстрахань13
БашкортостанНефтекамск52
БашкортостанСалават53
БашкортостанСтерлитамак53
БашкортостанУфа52
Белгородская областьБелгород32
Белгородская областьСтарый Оскол32
Брянская областьБрянск31
БурятияУлан-Удэ13
Владимирская областьВладимир31
Владимирская областьКовров41
Владимирская областьМуром31
Волгоградская областьВолгоград23
Волгоградская областьВолжский23
Волгоградская областьКамышин32
Вологодская областьВологда41
Вологодская областьЧереповец41
Воронежская областьВоронеж32
ДагестанДербент25
ДагестанМахачкала25
ДагестанХасавюрт25
Забайкальский крайЧита12
Ивановская областьИваново41
Иркутская областьАнгарск23
Иркутская областьБратск32
Иркутская областьИркутск23
Калининградская областьКалининград22
КалмыкияЭлиста23
Калужская областьКалуга31
Калужская областьОбниск31
Камчатский крайПетропавловск-Камчатский77
Кемеровская областьКемерово43
Кемеровская областьКиселевск42
Кемеровская областьЛенинск-Кузнецкий43
Кемеровская областьНовокузнецк43
Кемеровская областьПрокопьевск42
Кировская областьКиров51
Костромская областьКострома41
Краснодарский крайКраснодар26
Краснодарский крайНовороссийск25
Краснодарский крайСочи24
Красноярский крайАчинск43
Красноярский крайКрасноярск33
Красноярский крайНорильск53
Курганская областьКурган32
Курская областьКурск32
Ленинградская областьСанкт-Петербург32
Липецкая областьЕлец32
Липецкая областьЛипецк32
Магаданская областьМагадан55
Марийская РеспубликаЙошкар-Ола41
МордовияСаранск32
Московская областьБалашиха31
Московская областьЖелезнодорожный32
Московская областьЖуковский31
Московская областьКоломна31
Московская областьКрасногорск31
Московская областьЛюберцы31
Московская областьМосква31
Московская областьМытищи31
Московская областьНогинск31
Московская областьОдинцово41
Московская областьОрехово-Зуево31
Московская областьПодольск31
Московская областьСерпухов31
Московская областьХимки31
Московская областьЩелково31
Московская областьЭлектросталь31
Мурманская областьМурманск54
Нижегородская областьАрзамас42
Нижегородская областьДзержинск41
Нижегородская областьНижний Новгород41
Новгородская областьВеликий Новгород31
Новосибирская областьНовосибирск43
Омская областьОмск32
Оренбургская областьОренбург43
Оренбургская областьОрск42
Орловская областьОрел32
Пензенская областьПенза32
Пермский крайПермь52
Приморский крайАртем34
Приморский крайВладивосток24
Приморский крайНаходка25
Приморский крайУссурийск23
Псковская областьВеликие Луки31
Псковская областьПсков31
Республика КарелияПетрозаводск25
Республика КомиСыктывкар51
Республика КомиУхта52
Ростовская областьБатайск23
Ростовская областьВолгодонск23
Ростовская областьНовочеркасск23
Ростовская областьНовошахтинск23
Ростовская областьРостов-на-Дону23
Ростовская областьТаганрог23
Ростовская областьШахты23
Рязанская областьРязань31
Самарская областьВолжский43
Самарская областьНовокуйбышевск43
Самарская областьСамара43
Самарская областьСызрань33
Самарская областьТольятти43
Саратовская областьБалаково33
Саратовская областьСаратов33
Саратовская областьЭнгельс33
Сахалинская областьЮжно-Сахалинск44
Свердловская областьЕкатеринбург32
Свердловская областьКаменск-Уральский31
Свердловская областьНижний Тагил42
Свердловская областьПервоуральск42
Северная осетияВладикавказ2
Смоленская областьСмоленск31
Ставропольский крайНевинномысск25
Ставропольский крайСтаврополь25
Тамбовская областьТамбов32
ТатарстанАльметьевск52
ТатарстанКазань42
ТатарстанНабережные Челны52
ТатарстанНижнекамск52
Тверская областьТверь41
Томская областьТомск43
Тульская областьНовомосковск31
Тульская областьТула21
ТываКызыл21
Тюменская областьТобольск42
Тюменская областьТюмень32
УдмуртияИжевск51
Ульяновская областьДимитровград42
Ульяновская областьУльяновск42
Хабаровский крайКомсомольск-на-Амуре43
Хабаровский крайХабаровск23
ХакасияАбакан23
Ханты-Мансийский АОНефтеюганск42
Ханты-Мансийский АОНижневартовск52
Ханты-Мансийский АОСургут42
Челябинская областьЗлатоуст42
Челябинская областьКопейск32
Челябинская областьМагнитогорск43
Челябинская областьМиасс32
Челябинская областьЧелябинск32
Чеченская РеспубликаГрозный24
ЧувашияНовочебоксарск42
Чувашская РеспубликаЧебоксары42
ЯкутияЯкутск22
Ямало-Ненецкий АОНовый Уренгой52
Ямало-Ненецкий АОНоябрьск52
Ярославская областьРыбинск41
Ярославская областьЯрославль41

Для чего нужна вентиляция в парилке

Гидроизоляционная пленка на кровлю: разновидности и характеристики материалов

Правильное обустройство вентиляции в бане в парилке или помывочной – это важный фактор, которым не следует пренебрегать. При постройке здания частой ошибкой является заделка всех отверстий в помещении. Некоторые мастера по неопытности считают, что это поможет ускорить нагрев в парилке.

Но такой подход может привести к негативным последствиям не только для помещения, но и для здоровья. При нагреве будет скапливаться большое количество углекислого газа, который при повышении концентрации может привести к потере сознания или навредить дыхательной системе.

Вентиляция в помывочной поможет воздуху хорошо циркулироватьИсточник

Наличие правильной вентиляционной системы поможет сохранить и саму баню. Если в помещении будет слишком влажно, то на стенах могут появиться вредоносные грибки и бактерии. Плесень при нагреве помещения может попасть в дыхательные пути, а также вызвать аллергическую реакцию.

Наличие в помещении грибка ухудшит внешний вид помещения и будет вызывать неприятный запах при застое воздуха или нагреве бани. Распространение плесени по стенам может повредить внутреннюю отделку парилки или начать разрушать структуру дерева, если она появилась в срубе.

При правильной установке вентиляции в бане, в парилке и в помывочной можно создать в помещении микроклимат, который будет способствовать приятному и полезному посещению сауны, а также ускорить нагрев помещений в ней.

Нельзя допустить появления плесени или бактерий в банеИсточник

Как рассчитать вес кровельного пирога?

Прежде всего, нужно подсчитать, сколько будет весить сама кровля дома.

Это необходимый расчет – стропила должны выдерживать эту постоянную нагрузку в течение длительного времени.

Произвести расчет несложно, нужно подсчитать массу одного метра квадратного каждого из слоев «пирога» кровли. Затем вес каждого слоя суммируется, а полученный результат умножается на поправочный коэффициент 1,1.

Пример расчета. Возьмем для примера кровлю, покрытую ондулином. Крыша состоит из следующих слоев:

  • Обрешетка крыши, собранная из дощечек толщиной 2,5 см. Вес метра квадратного этого слоя составляет 15 кг.
  • Утеплитель (вата минеральная) толщиной10 см, вес квадратного метра утеплителя10 кг.
  • Гидроизоляция – полимерно-битумный материал. Вес гидроизоляционного слоя –5 кг.
  • Ондулин. Вес квадратного метра этого кровельного материала составляет3 кг.

Складываем полученные значения – 15+10+5+3 =33 кг.

Умножаем на поправочный коэффициент 33×1.1=34,1 кг. Это значение является весом пирога кровли.

В большинстве случаев, при строительстве жилых домов, нагрузка не достигает значения50 кгна метр квадратный.

Совет! Опытные строители рекомендуют опираться именно на эту цифру, хотя она является явно завышенной для большинства кровельных покрытий. Но зато, если через несколько десятилетий хозяева дома захотят поменять кровлю, то им не придется менять все стропила – расчет был произведен с солидным запасом.

Таким образом, нагрузка от веса кровельного «пирога» составляет 50×1,1 = 55 кг/кв. метр

Расчет снеговой нагрузки на кровлю на реальных примерах

Не все знают, что вес снега на кровле в зимний период, может превышать вес самой кровли, и снеговыми нагрузками на крышу пренебрегать ни в коем случае нельзя. Тем более что снеговая нагрузка на кровлю настолько значима в проектировании, что учитывается даже при расчете фундамента.

Для чего необходимо учитывать снеговую нагрузку

При расчете фундамента

Прежде всего, снеговую нагрузку учитывают при расчете максимального веса всего дома. А масса дома, в свою очередь, необходима для того чтобы правильно рассчитать фундамент под дом.

Естественно, что снеговая нагрузка не на прямую воздействует на фундамент, а передается через стены дома, но не учитывать ее, при расчете фундамента, особенно на слабых грунтах – нельзя.

При расчете самой кровли

На кровлю снеговая нагрузка воздействует самым непосредственным образом, причем, если на фундамент она распределяется более или менее ровно, то угадать, где на крыше будет снега больше, а где меньше – сложно, так как это зависит от направления ветра, уклона скатов и многих других факторов.

Поэтому при расчете кровли, снеговая нагрузка должна учитываться как основное воздействие.

Как правильно рассчитать снеговую нагрузку на кровлю

Для полноценного расчета нам необходимо будет рассчитать площадь крыши частного дома. Как это делается – я рассказывал подробно в предыдущих статьях, поэтому останавливаться на этом не будем.

Итак, формула для расчета снеговой нагрузки Q на кровлю выглядит следующим образом:

Q = G * s , где

G – вес снежного покрытия на плоской кровле, который берется из таблицы (кг/м2) s – поправочный коэффициент, зависящий от уклона кровли

Поправочный коэффициент s, как уже говорилось, зависит от уклона кровли:

  • уклон менее 25 градусов – s принимается равным 1
  • уклон 25 – 60 градусов – s будет равным 0,7
  • уклон более 60 градусов – снеговая нагрузка вообще не учитывается, так как снег на такой кровле задерживаться практически не будет

А что же делать с G?

Вес снежного покрытия на плоской кровле можно найти с помощью таблицы и карты зоны снежного покрова на территории России:

Как видно из таблицы, масса снега на кровле, особенно в заснеженных районах России, может превышать вес самой кровли, поэтому не учитывать снежную нагрузку в зимний период нельзя не учитывать.

Реальный пример расчета снеговой нагрузки на кровлю

Давайте рассчитаем снеговую нагрузку на примере моего дома. Определим максимальный вес снега на 1 метр квадратный, а так же подсчитаем полную массу снега на кровле зимой, для расчета нагрузки на фундамент.

Итак, мой дом находится в районе РФ №3, поэтому Q возьмем равной 180 кг/м 2 .

Уклон кровли дома равен около 40 градусов, поэтому необходимо 180*0,7 = 126 кг/м 2 .

Таким образом максимально возможная снеговая нагрузка на кровлю моего дома равна 126 кг/м 2 .

Для расчета фундамента нам понадобится вся масса снега на кровле, а для этого необходимо сначала рассчитать площадь крыши дома. В моем случае, площадь кровли равна примерно 150 квадратных метров.

Полная нагрузка от снега зимой:

M = 126 * 150 = 18 900 кг

Таким образом, снег добавляет к общей массе дома еще 19 тонн. И как такую массу не учитывать?

ВНИМАНИЕ! При расчетах в строительстве всегда необходимо брать запас по прочности, поэтому полученные величины желательно еще умножать на 1,2.

Расчет массы снега и нагрузки по СНиП

При снегопаде нагрузка может деформировать элементы несущей конструкции дома, стропильную систему, кровельные материалы. С целью предотвращения этого на стадии проектирования выполняют расчет конструкции в зависимости от воздействия нагрузки. В среднем снег весит порядка 100кг/м3, а в мокром состоянии его масса достигает 300 кг/м3. Зная эти величины, достаточно просто можно рассчитать нагрузку на всю площадь, руководствуясь всего лишь толщиной снегового слоя.

Толщина покрова должна измеряться на открытом участке, после чего это значение умножают на коэффициент запаса – 1,5. Для учета региональных особенностей местности в России используют специальную карту снеговой нагрузки. На её основе построены требования СНиП и других правил. Полная снеговая нагрузка на крышу рассчитывается при помощи формулы:

S=Sрасч. Чм;

где S – полная снеговая нагрузка;

Sрасч. – расчетное значение веса снега на 1 м2 горизонтальной поверхности земли;

м – расчетный коэффициент, учитывающий наклон кровли.

На территории России расчетное значение веса снега на 1м2 в соответствии со СНиП принимается по специальной карте, которая представлена ниже.

СНиП оговаривает следующие значения коэффициента м:

    при уклоне крыши менее, чем 25° его значение равняется единице; при величине уклона от 25° до 60° он имеет значение 0,7; если уклон составляет более 60° , расчетный коэффициент не учитывается при расчете нагрузки.

Расчёт ветровой нагрузки на крышу

Основные повреждения на здании при сильных порывах ветра связаны с кровелькой конструкцией. По телевизору и в интернете приведено достаточно много наглядных примеров, как не только отдельные элементы кровли, но полностью вся крыша срывается под воздействием ветровой нагрузки.

При фронтальном направлении ветра происходит столкновение с фасадной частью здания и крышей. У вертикальной поверхности поток создаёт вихревые разнонаправленные векторы, — происходит деление на нижнюю, боковую и вертикальную составляющие.

  1. Нижнее направление – самое безопасное для здания, так как все усилия направлены в сторону фундамента, то есть одной из самой прочной и массивной части дома.
  2. Боковые составляющие воздействуют на фасадные части здания, окна, двери.
  3. Вертикальный поток направлен прямо на свес крыши и создаёт подъёмное усилие, стремящееся приподнять кровлю, сдвинуть её с места.

Воздушный поток, направленный на скат крыши, образует:

  • касательное движение, скользящее вдоль кровли, огибающее конёк и уходящее прочь, — эта сила стремится сдвинуть крышу с места;
  • перпендикулярное усилие, — нормаль, направленное внутрь кровли, создающее давление, могущее вдавить элементы крыши внутрь конструкции;
  • с подветренной стороны ската крыши создаётся обратная сила, способствующая созданию подъёмной силы, — как у крыла самолёта.

Расчёт воздушной нагрузки на крышу, в зависимости от высоты её местонахождения над уровнем земли, определяется по формуле:

  • W – нормативная величина усилия, создаваемого напором воздуха; определяется по картам в приложении к СП ;
  • k – коэффициент, показывающий зависимость давления от высоты над срезом верхнего уровня земли (таблица 3);
  • C – аэродинамический коэффициент, учитывающий направление набегания воздушного потока на скат крыши (таблица 4 и 5).

Таблица 3. Коэффициент k для типов местности:

Высота над уровнем земли, метрТип местности
ABC
≤ 50,750,50,4
101,250,650,4
201,250,850,55
401,51,10,8
601,71,31,0
801,851,451,15
1002,01,61,25
1502,251,91,55
2002,452,11,8
2502,652,32,0
3002,752,52,2
3502,752,752,35
≥ 4802,752,752,75

Типы местности:

  • A – открытые пространства на побережьях морей, озёр, водохранилищ, пустыня, степь, лесостепь, тундра;
  • B – населённые пункты, лес, местность с равномерно распределёнными искусственными строениями с высотой больше 10 метров;
  • C – территория города с плотным расположением строительных сооружений высотой более 25 метров.

Таблица 4. Значение коэффициента С для двускатной кровли при векторе потока в скат крыши:

Угол наклона άFGHIJ
15°-0,9-0,8-0,3-0,4-1,0
0,20,20,2
30°-0,5-0,5-0,2-0,4-0,5
0,70,70,4
45°0,70,70,6-0,2-0,3
60°0,70,70,7-0,2-0,3
75°0,80,80,8-0,2-0,3

Таблица 5. Значение коэффициента С для двускатной кровли при направлении потока во фронтон крыши:

Угол наклона άFHGI
-1,8-1,7-0,7-0,5
15°-1,3-1,3-0,6-0,5
30°-1,1-1,4-0,8-0,5
45°-1,1-1,4-0,9-0,5
60°-1,1-1,2-0,8-0,5
75°-1,1-1,2-0,8-0,5

Положительная величина аэродинамического коэффициента означает, что ветер давит на поверхность. Отрицательные показатели – поток создаёт разрежение у поверхности кровли, иными словами – «отсос» воздушной подушки.

Пример расчёта

Дано:

  • здание находится на берегу большого внутреннего водоёма, местность относится к типу A;
  • кровля расположена на высоте 10 метров, то есть коэффициент равен 1,25;
  • преобладающие ветра направлены во фронтон крыши, отсюда аэродинамический показатель для крыши с наклоном ά = 30 равен C = -1,4;
  • норматив для района Поволжья W = 53 кгс/м².

Расчётное значение ветрового усилия составит:

Wр = 0,7 * 53 кгс/м² * 1,25 * (-1,4) = -64,925 кгс/м².

Отрицательное значение показывает, что имеется усилие, стремящееся оторвать кровлю от всего здания.

При общих размерах кровли S = 30 м², общее усилие составит:

P = 30 м² * (-64,925 кгс/м²) = -1947,75 кгс, то есть почти две тонны.

Расчет деревянных элементов покрытия: обрешетки и стропильной ноги

1. Расчет несущих элементов покрытия

Стропильные ноги рассчитывают как свободно лежащие балки на двух опорах с наклонной осью. Нагрузка на стропильную ногу собирается с грузовой площади, ширина которой равна расстоянию между стропильными ногами. Расчетная временная нагрузка q должна быть расположена на две составляющие: нормальную к оси стропильной ноги и параллельно к этой оси.

2.1.1. Расчет обрешетки

Принимаем обрешетку из досок сечением 50´50 мм (r = 5,0 кН/м), уложенных с шагом 250 мм. Древесина — сосна. Шаг стропил 0,9 м. Уклон кровли 35 0 .

Расчет обрешетки под кровлю ведется по двум вариантам загружения:

а) Собственный вес кровли и снег (расчет на прочность и прогиб).

б) Собственный вес кровли и сосредоточенный груз.

бруски 2-го сорта с расчетным сопротивлением Ru=13 МПа и модулем упругости Е=1´10 4 МПа.

эксплуатации Б2 (в нормальной зоне), mв=1; mн=1,2 для монтажной нагрузки при изгибе.

древесины r=500 кг/м 3 .

Расчет деревянных элементов покрытия: обрешетки и стропильной ноги

надежности по нагрузке от веса оцинкованной стали gf=1,05; от веса брусков gf=1,1.

вес снегового покрова на 1м 2 горизонтальной проекции поверхности земли S=2400 Н/м 2 .

Расчетная схема обрешетки

Расчет деревянных элементов покрытия: обрешетки и стропильной ноги

Сбор нагрузки на 1м.п. обрешетки, кН/м

где S — нормативное значение веса снегового покрова на 1 м 2 горизонтальной

поверхности земли, принимаемое по табл. 4 , для IV снегового рай-

Расчет деревянных элементов покрытия: обрешетки и стропильной ноги

m — коэффициент перехода от веса снегового покрова земли к

снеговой нагрузке на покрытие, принимаемый по п. 5.3 – 5.6 .

При загружении балки равномерно распределенной нагрузкой от собственного веса и снега наибольший изгибающий момент равен:

Расчет деревянных элементов покрытия: обрешетки и стропильной ноги

При углах наклона кровли a³10° учитывают, что собственный вес кровли и обрешетки равномерно распределен по поверхности (скату) крыши, а снег — по ее горизонтальной проекции :

Mx = M cos a = cos 29 0 = кН´м

My= M sin a = sin 29 0 = кН´м

Расчет деревянных элементов покрытия: обрешетки и стропильной ноги

Прочность брусков обрешетки проверяют с учетом косого изгиба по формуле:

где Mx и My — составляющие расчетного изгибающего момента относительно главных осей X и Y.

Ry=13 МПа — расчетное сопротивление древесины изгибу.

Расчет деревянных элементов покрытия: обрешетки и стропильной ноги

gn=0,95 — коэффициент надежности по назначению.

Момент инерции бруска определяем по формуле:

Прогиб в плоскости, перпендикулярной скату:

Расчет деревянных элементов покрытия: обрешетки и стропильной ноги

Прогиб в плоскости, параллельной скату:

где Е=10 10 Па — модуль упругости древесины вдоль волокон.

Проверка прогиба:

Расчет деревянных элементов покрытия: обрешетки и стропильной ноги

где

При загружении балки собственным весом и сосредоточенным грузом наибольший момент в пролете равен:

Проверка прочности нормальных сечений:

Расчет деревянных элементов покрытия: обрешетки и стропильной ноги

где Ry=13 МПа — расчетное сопротивление древесины изгибу.

gn=0,95 — коэффициент надежности по назначению.

Условия по первому и второму сочетаниям выполняются, следовательно принимаем обрешетку сечением b´h=0,05´0,05 с шагом 250 мм.

Расчет деревянных элементов покрытия: обрешетки и стропильной ноги

2.1.2. Расчет стропильных ног

Рассчитаем наслонные стропила из брусьев с однорядным расположением промежуточных опор под кровлю из оцинк. кр. железо. Основанием кровли служит обрешетка из брусков сечением 50

Расчет деревянных элементов покрытия: обрешетки и стропильной ноги

=0,25 м =1,0 м

Район строительства – г. Вологда.

Расчетная схема стропильной ноги

Расчет деревянных элементов покрытия: обрешетки и стропильной ноги

Бруски обрешетки размещены по стропильным ногам, которые нижними

концами опираются на мауэрлаты (100

Производим сбор нагрузок на 1 м 2 наклонной поверхности покрытия, данные заносим в таблицу 2.2.

Расчет деревянных элементов покрытия: обрешетки и стропильной ноги

Таблица нагрузки на 1м.п. стропильной ноги, кН/м

где S — нормативное значение веса снегового покрова на 1 м 2 горизонтальной поверхности земли, принимаемое по табл. СНиП 4 , для IV снегового района S = 2,4 кПа;

m — коэффициент перехода от веса снегового покрова земли к снеговой нагрузке на покрытие, принимаемый по п. 5.3 – 5.6 .

Расчет деревянных элементов покрытия: обрешетки и стропильной ноги

Производим статический расчет стропильной ноги как двухпролетной балки, нагруженной равномерно распределенной нагрузкой. Опасным сечением стропильной ноги является сечение на средней опоре.

Изгибающий момент в этом сечении:

Вертикальное давление в точке С, равное правой опорной реакции двухпролетной балки составляет:

Расчет деревянных элементов покрытия: обрешетки и стропильной ноги

При симметричной нагрузке обоих скатов вертикальное давление в точке С удваивается:

Раскладывая это давление по направлению стропильных ног, находим сжимающее усилие в верхней части стропильной ноги:

Растягивающее усилие в ригеле равно горизонтальной проекции усилия N.

Расчет деревянных элементов покрытия: обрешетки и стропильной ноги

Проверяем сечение стропильной ноги.

Из условия прочности при изгибе определяем требуемый момент инерции, вводя коэффициент 1,3 для возможности восприятия сечением продольной силы и момента.

Сечение Æ16см удовлетворяет требованиям. Wx=409,6 см 3 , Jx=3276,8 см 4 . Производим проверку сечения на сжатие с изгибом:

Расчет деревянных элементов покрытия: обрешетки и стропильной ноги

Что получаем в итоге всего

После проведения всех расчетов получим состав конструктивных элементов, количество балок, вес крыши с учетом снеговой и ветровой нагрузки, и сможем просчитать общий вес крыши. Останется оценить распределение весового воздействия на стену, сравнив ее с прочностью материала стены, и убедиться, что стена выдержит.

Здесь стоит иметь в виду, что запас прочности стены должен составлять не менее 25-30%, ведь даже в спокойных регионах не редкость очень сильные ветры или обильные снегопады, и пиковая нагрузка может кратковременно превысить расчетную. Как правило, такие воздействия скоротечны, и стропильная система выдержит, но если у стены нет запаса прочности, то сами понимаете, может произойти разрушение связки мауэрлат – стена.

Поэтому отнеситесь с вниманием к данному вопросу, используйте эту статью, чтобы если и не рассчитать все самому, то проконтролировать расчеты проектировщика.

Плоские кровли

На плоской горизонтальной поверхности скапливается максимально возможное количество снега. Расчет нагрузок в этом случае должен обеспечивать необходимый запас прочности несущей конструкции. Плоские горизонтальные крыши практически не строят в районах России с большим количеством атмосферных осадков. Снег может скапливаться на их поверхности и создавать чрезмерно большую нагрузку, которая не учитывалась при расчете. При организации водосточной системы с горизонтальной поверхности прибегают к установке подогрева, который обеспечивает стекание воды с крыши.

Уклон в сторону водосточной воронки должен быть не менее 2°, что даст возможность собирать воду со всей кровли.

При строительстве навеса для беседки, стоянки автомобиля, дачного домика особое внимание уделяют расчету нагрузки. Навес в большинстве случаев имеет бюджетную конструкцию, которая не предусматривает влияния больших нагрузок. С целью увеличения надежности эксплуатации навеса используют сплошную обрешетку, усиленные стропила и другие конструктивные элементы. Используя результаты расчета можно получить заведомо известное значение нагрузки и использовать для строительства навеса материалы необходимой жесткости.

Расчет основных нагрузок дает возможность оптимально подойти к вопросу выбора конструкции стропильной системы. Это обеспечит длительную службу кровельного покрытия, повысит его надежность и безопасность эксплуатации. Установка возле карниза снегозадержателей позволяет обезопасить людей от сползания опасных для человека снежных масс. В дополнение к этому отпадает необходимость ручной очистки. Комплексный подход в проектировании кровли также включает вариант монтажа системы кабельного обогрева, которая будет обеспечивать стабильную работу водосточной системы при любой погоде.