Теплопрово́дность — способность материальных тел проводить энергию (теплоту) от более нагретых частей тела к менее нагретым частям тела путём хаотического движения частиц тела (атомов, молекул, электронов и т. п.). Такой теплообмен может происходить в любых телах с неоднородным распределением температур, но механизм переноса теплоты будет зависеть от агрегатного состояния вещества.
Содержание
- 1 От чего зависят тепловые потери в доме
- 2 Что такое теплопроводность и её значимость?
- 3 Что такое теплопроводность: определение
- 4 Теплопроводность – что это
- 5 О понятии теплопроводности
- 6 Таблица: коэффициентов теплопроводности металлов, полупроводников и изоляторов
- 7 Закон теплопроводности Фурье
- 8 Факторы, влияющие на теплопропускаемость бетона
- 9 Виды утеплителей
- 10 Коэффициент теплопроводности материалов.
- 11 Технологии укладки
- 12 Как рассчитать необходимую теплопроводимость?
- 13 Показатели влажности ячеистого бетона
- 14 описание различных пород, необходимость таблицы коэффициентов теплопроводности
- 15 Теплопроводность кирпичной стены
- 16 Выбираем кирпич: о «теплых» и «холодных» стройматериалах
- 17 Понятие теплопроводности
- 18 Материалы из бетона с добавлением пористых заполнителей
- 19 Что такое коэффициент теплопроводности
От чего зависят тепловые потери в доме
Климатические условия
Регион РФ | Допустимая энергоэффективность окна (м²×°C/Вт) |
---|---|
Алтай | 0,64 |
Адыгея | 0,35 |
Астраханская область | 0,48 |
Башкортостан | 0,6 |
Бурятия | 0,67 |
Дагестан | 0,35 |
Калининградская область | 0,42 |
Коми | 0,69 |
Краснодарский край | 0,35 |
Ленинградская область | 0,54 |
Московская область | 0,52 |
Магаданская область | 0,77 |
Омская область | 0,64 |
Орловская область | 0,5 |
Ростовская область | 0,42 |
Татарстан | 0,58 |
Саха (Якутия) | 0,8 |
Что такое теплопроводность и её значимость?
Теплопроводность – это количественное свойство веществ пропускать тепло, которое определяется коэффициентом. Этот показатель равен суммарному количеству тепла, которое проходит сквозь однородный материал, имеющий единицу длины, площади и времени при одинарной разнице в температурах. Система СИ преобразует эту величину в коэффициент теплопроводности, это в буквенном обозначении выглядит так – Вт/(м*К). Тепловая энергия распространяется по материалу посредством быстро движущихся нагретых частиц, которые при столкновении с медленными и холодными частицами передают им долю тепла. Чем лучше нагретые частицы будут защищены от холодных, тем лучше будет сохраняться накопленное тепло в материале.
Движение молекул тепла
Что такое теплопроводность: определение
При возведении зданий и сооружений могут использоваться разные материалы. Жилые и производственные постройки в условиях российского климата обычно утепляются. То есть, при их строительстве применяются специальные изоляторы, основным назначением которых является поддержание комфортной температуры внутри помещений. При расчете необходимого количества минеральной ваты или пенополистирола в обязательном порядке принимается во внимание теплопроводность использованного для возведения ограждающих конструкций основного материала.
Очень часто здания и сооружения в нашей стране строятся из разных видов бетона. Также для этой цели используются кирпич и дерево. Собственно самой теплопроводностью называется способность вещества к переносу энергии в своей толще в силу движения молекул. Идти подобный процесс может, как в твердых частях материала, так и в его порах. В первом случае он называется кондукцией, во втором — конвекцией. Остывание материала гораздо быстрее идет в его твердых частях. Воздух, заполняющий поры, задерживает тепло, конечно же, лучше.
Теплопроводность – что это
Сам термин «теплопроводность» определяет передачу энергии тепловой от предметов с более высокой температурой – предметам с более низкой. Сам теплообмен осуществляется до тех пор, пока температура обоих предметов не станет одинаковой. Чтобы обозначить энергию тепловую был создан коэффициент теплопроводности, применяемый для строительных материалов. Этот параметр дает четкое понимание того, какое количество энергии тепловой проходит в единицу времени через единицу площади. Чем выше этот показатель – тем лучше теплообмен. Чем меньше теплопроводность материал – тем более он пригоден для строительства жилых и отапливаемых помещений. Согласно строительным нормам толщина стен, препятствующая теплопотерям в зданиях должна соответствовать:
- Кирпич — 210 см
- Керамзитобетон — 90 см
- Дерево — 53 см
- Газобетон — 44 см
- Минеральная вата — 18 см
- Пенополистерол — 12 см
Теплопроводный коэффициент характеризуется показателем количества теплоты, проходящего сквозь метр толщины материала в единицу времени, равную 60 минут. При создании лучшей теплоизоляции профессионалы рекомендуют использовать эту характеристику в обязательном порядке. Также на нее стоит обратить внимание при необходимости подобрать дополнительные утепляющие материалы и конструкции. Рассмотрим соотношение материала и коэффициента теплопроводности, измеренного в Ваттах на метр квадратный Кельвин:
алюминий асбест асфальтобетон асбесто-цементные плиты бетон, желоззобетон битум бронза винипласт вода при температурі вище 0 войлок шерстяной гипсокартон гранит древесина из дуба, волокна размещены вдоль древесина из дуба, волокна размещены поперек древесина из сосны или ели, волокна размещены вдоль древесина из сосны или ели, волокна размещены поперек | до 221 Вт/м2 0,151 Вт/м2*К 1,05 Вт/м2*К 0,35 Вт/м2*К до 1,51 Вт/м2*К 0,27 Вт/м2*К 64 Вт/м2 0,163 Вт/м2*К 0,6 Вт/м2*К 0,047 Вт/м2*К 0,15 Вт/м2*К 3,49 Вт/м2*К 0,23 Вт/м2*К 0,1 Вт/м2*К 0,18 Вт/м2*К до 0,15 Вт/м2*К | плита древесно-стружечная или плита ориентировано-стружечная железобетон Картон используемый для облицовки Керамзит, плотность 200кг / м3 Керамзит, плотность 800кг / м3 Керамзитобетон, плотность 500кг / м3 Керамзитобетон, плотность 1800кг / м3 Кирпич керамический, пустотелый брутто 1000, плотность 1200кг / м3 Кирпич керамический, пустотелый брутто брутто 1400, плотность 1600кг / м3 Кирпич красный глиняный Кирпич силикатный Кладка из изоляционного кирпича Кладка из обыкновенного кирпича Кладка из огнеупорного кирпича Краска масляная | 0,15 Вт / м2К 1,69 Вт / м2К 0,18 Вт / м2К 0,1 Вт / м2К 0,18 Вт / м2К 0,14 Вт / м2К 0,66 Вт / м2К 0,35 Вт / м2К 0,41 Вт / м2К 0,56 Вт / м2К 0,7 Вт / м2К до 0,209 Вт / м2К до 0,814 Вт / м2К 1,05 Вт / м2К 0,233 Вт / м2К |
О понятии теплопроводности
Теплопроводностью обладают все твердые, жидкие и газообразные вещества. Энергию от нагретого участка более холодному передают хаотично движущиеся частицы — молекулы, атомы, электроны. Чем ближе друг к другу они расположены, тем активнее происходит теплообмен.
Плотность материала напрямую влияет на его способность проводить тепло. Например, кирпич по сравнению с ячеистым бетоном более плотный, лучше проводит тепловую энергию. Кирпичная стена толщиной 500 мм также защищает помещение от теплопотерь, как легкобетонная толщиной 300 мм. Железобетон плотнее керамзитобетона в три раза, соответственно, он более теплопроницаемый.
Бетон представляет собой сложную неоднородную структуру. Входящие в состав компоненты обладают разной способностью теплопередачи. Наименьшую имеет воздух в капиллярах цементного камня и микрополостях внутри заполнителя. Чем материал пористее, тем хуже передается тепловая энергия.
Закономерную связь между видом заполнителя и теплопроводностью бетона подтверждают опыты материаловедов Довжика В. Г., Миснара А. Они установили, что чем мельче размер замкнутых пор в теле монолита, тем хуже передается тепло.
Третий фактор, влияющий на теплопроводность — влажность. Вода проводит тепло в 20 раз лучше воздуха. Заполняя поры бетона, она ухудшает теплоизоляционные качества. Зимой возможно промерзание увлажненного слоя ограждающей конструкции.
Таблица: коэффициентов теплопроводности металлов, полупроводников и изоляторов
Теплопроводность многих металлов следует соотношению k = 2,5·10-8σT, где Т обозначает температуру в °К, а σ — электропроводность в единицах (ом·см)-1. Это соотношение, которое лучше всего оправдывается для хороших проводников электричества и при высоких температурах, можно применять и для определения коэффициентов теплопроводности.
Соотношение kpcp=const, где р обозначает плотность, а ср — удельную теплоемкость при постоянном давлении, было предложено Стормом для того, чтобы объяснить температурные изменения этих величин для некоторых металлов и сплавов.
Таблица коэффициента теплопроводности металлов
Элементы с металлической электропроводностью.
Алюминий | 2,45 | 2,38 | 2,30 | 2,26 | 0,9 |
Бериллий | 4,1 | 2,3 | 1,7 | 1,25 | 0,9 |
Ванадий | — | — | 0,31 | 0,34 | — |
Висмут | 0,11 | 0,08 | 0,07 | 0,11* | 0,15* |
Вольфрам | 2,05 | 1,90 | 1,65 | 1,45 | 1,2 |
Гафний | — | — | 0,22 | 0,21 | — |
Железо | 0,94 | 0,76 | 0,69 | 0,55 | 0,34 |
Золото | 3,3 | 3,1 | 3,1 | — | — |
Индий | — | 0,25 | — | — | — |
Иридий | 1,51 | 1,48 | 1,43 | — | — |
Кадмий | 0,96 | 0,92 | 0,90 | 0,95 | 0,44 (400°)* |
Калий | — | 0,99 | — | 0,42* | 0,34* |
Кальций | — | 0,98 | — | — | — |
Кобальт | — | 0,69 | — | — | — |
Литий | — | 0,71 | 0,73 | — | — |
Магний | 1,6 | 1,5 | 1,5 | 1,45 | — |
Медь | 4,05 | 3,85 | 3,82 | 3,76 | 3,50 |
Молибден | 1,4 | 1,43 | — | — | 1,04 (1000°) |
Натрий | 1,35 | 1,35 | 0,85* | 0,76* | 0,60* |
Никель | 0,97 | 0,91 | 0,83 | 0,64 | 0,66 |
Ниобий | 0,49 | 0,49 | 0,51 | 0,56 | — |
Олово | 0,74 | 0,64 | 0,60 | 0,33 | — |
Палладий | 0,69 | 0,67 | 0,74 | — | — |
Платина | 0,68 | 0,69 | 0,72 | 0,76 | 0,84 |
Рений | — | 0,71 | — | — | — |
Родий | 1,54 | 1,52 | 1,47 | — | — |
Ртуть | 0,33 | 0,09 | 0.1 | 0,115 | — |
Свинец | 0,37 | 0,35 | 0,335 | 0,315 | 0,19 |
Серебро | 4,22 | 4,18 | 4,17 | 3,62 | — |
Сурьма | 0,23 | 0,18 | 0,17 | 0,17 | 0,21* |
Таллий | 0,41 | 0,43 | 0,49 | 0,25 (400 0)* | |
Тантал | 0,54 | 0,54 | — | — | — |
Титан | — | — | 0,16 | 0,15 | — |
Торий | — | 0,41 | 0,39 | 0,40 | 0,45 |
Уран | — | 0,24 | 0,26 | 0,31 | 0,40 |
Хром | — | 0,86 | 0,85 | 0,80 | 0,63 |
Цинк | 1,14 | 1,13 | 1,09 | 1,00 | 0,56* |
Цирконий | — | 0,21 | 0,20 | 0,19 | — |
* числа, набранные курсивом, относятся к жидкой фазе.
Таблица коэффициента теплопроводности полупроводников и изоляторов
Германий | 1,05 | 0,63 | — | — | — |
Графит | — | 0,5—4,0 | 0,5—3,0 | 0,4-1,7 | 0,4-0,9 |
Йод | — | 0,004 | — | — | — |
Углерод | — | 0,016 | 0,017 | 0,019 | 0,023 |
Селен | — | 0,0024 | — | — | — |
Кремний | — | 0,84 | — | — | — |
Сера | — | 0,0029 | 0,0023 | — | — |
Теллур | — | 0,015 | — | — | — |
Закон теплопроводности Фурье
В установившемся режиме плотность потока энергии, передающейся посредством теплопроводности, пропорциональна градиенту температуры:
где — вектор плотности теплового потока — количество энергии, проходящей в единицу времени через единицу площади, перпендикулярной каждой оси, — коэффициент теплопроводности (удельная теплопроводность), — температура. Минус в правой части показывает, что тепловой поток направлен противоположно вектору (то есть в сторону скорейшего убывания температуры). Это выражение известно как закон теплопроводности Фурье.
В интегральной форме это же выражение запишется так (если речь идёт о стационарном потоке тепла от одной грани параллелепипеда к другой):
где — полная мощность тепловых потерь, — площадь сечения параллелепипеда, — перепад температур граней, — длина параллелепипеда, то есть расстояние между гранями.
Связь с электропроводностью
Связь коэффициента теплопроводности с удельной электрической проводимостью в металлах устанавливает закон Видемана — Франца:
где — постоянная Больцмана, — заряд электрона, — абсолютная температура.
Коэффициент теплопроводности газов
В газах коэффициент теплопроводности может быть найден по приближённой формуле
где — плотность газа, — удельная теплоёмкость при постоянном объёме, — средняя длина свободного пробега молекул газа, — средняя тепловая скорость. Эта же формула может быть записана как
где — сумма поступательных и вращательных степеней свободы молекул (для двухатомного газа , для одноатомного ), — постоянная Больцмана, — молярная масса, — абсолютная температура, — эффективный (газокинетический) диаметр молекул, — универсальная газовая постоянная. Из формулы видно, что наименьшей теплопроводностью обладают тяжелые одноатомные (инертные) газы, наибольшей — легкие многоатомные (что подтверждается практикой, максимальная теплопроводность из всех газов — у водорода, минимальная — у радона, из нерадиоактивных газов — у ксенона).
Теплопроводность в сильно разреженных газах
Приведённое выше выражение для коэффициента теплопроводности в газах не зависит от давления. Однако если газ сильно разрежен, то длина свободного пробега определяется не столкновениями молекул друг с другом, а их столкновениями со стенками сосуда. Состояние газа, при котором длина свободного пробега молекул ограничивается размерами сосуда называют высоким вакуумом. При высоком вакууме теплопроводность убывает пропорционально плотности вещества (то есть пропорциональна давлению в системе): , где — размер сосуда, — давление.
Таким образом коэффициент теплопроводности вакуума тем ближе к нулю, чем глубже вакуум. Это связано с низкой концентрацией в вакууме материальных частиц, способных переносить тепло. Тем не менее, энергия в вакууме передаётся с помощью излучения. Поэтому, например, для уменьшения теплопотерь стенки термоса делают двойными, серебрят (такая поверхность лучше отражает излучение), а воздух между ними откачивают.
Факторы, влияющие на теплопропускаемость бетона
Из-за неоднородности структуры бетонных конструкций и разных условий эксплуатации коэффициент теплопроводности в этом случае – величина условная. На этот параметр оказывают влияние:
- Плотность. Чем плотнее материал, тем ближе друг к другу находятся его частицы, тем быстрее передается тепло. Это значит, что тяжелые бетоны имеют больший коэффициент теплопроводности, по сравнению с легкими (керамзитовыми, вермикулитовыми, перлитовыми).
- Пористость и структура пор. Чем больше объем, занятый воздухом, тем лучше материал задерживает тепло. Но на теплоизоляционные характеристики влияет не только процентное содержание воздуха, но и размеры, а также замкнутость пор. Лучше всего прохождению тепла препятствуют мелкие замкнутые поры. Крупные поры, которые сообщаются между собой, увеличивают теплопередачу.
- Влажность. Это еще один фактор, влияющий на коэффициент теплопередачи бетона. Вода способна проводить тепло в 20 раз лучше воздуха. Поэтому увлажненный материал резко теряет теплоизоляционные характеристики. При отрицательных температурах вода в увлажненном слое замерзает, вызывая не только повышенные теплопотери здания, но и быстрое разрушение строительного материала. В таблицах, применяемых при точных теплотехнических расчетах, часто указывают три значения коэффициента теплопроводности – в сухом виде, при нормальной влажности, в увлажненном состоянии.
- Температура. С повышением температуры коэффициент теплопроводности увеличивается.
Сравнение коэффициента теплопроводности тяжелого бетона, пено- и газобетона, керамзитобетона, фибробетона.
Наиболее высоким коэффициентом теплопроводности обладает тяжелый бетон, армированный стальными стержнями или проволокой (железобетон) – до 2,04 Вт/(м*C). Немного ниже этот показатель у неармированных бетонных элементов.
Более низким коэффициентом теплопроводности и повышенными теплоизоляционными характеристиками обладают: керамзитобетон, изготовленный с использованием кварцевого или перлитового песка, сухой пено- и газобетон. Уровень теплопередачи фибробетона сравним с аналогичным показателем плотного керамзитобетона.
Таблица коэффициентов теплопроводности различных видов бетона
Вид бетона | Коэффициент теплопроводности, Вт/(м*C) |
Тяжелый армированный бетон | 1,68- 2,04 |
Тяжелый бетон | 1,29-1,52 |
Керамзитобетон (в зависимости от плотности) | 0,14-0,66 |
Пенобетон (в зависимости от плотности) | 0,08-0,37 |
Газобетон разной плотности | 0,1-0,3 |
Фибробетон | 0,52-0,75 |
Правильное проведение теплотехнических расчетов позволяет определить оптимальную толщину стен, что обеспечивает уменьшение расходов на отопление и комфортный микроклимат внутри здания.
Производим и предлагаем продукцию:
Читайте также:
- Бетон для системы «теплый пол»
- Плотность бетона: что это такое, на что влияет?
- Влияние температуры на бетон
- Водонепроницаемость бетона
- Морозостойкость бетона
Виды утеплителей
Из утеплителей меньшей теплопроводностью обладают пенополистирол и экструдированный пенополиуретан. Это жесткие, хрупкие материалы, выпускающиеся в плитах, и имеющие ячеистую структуру. Но нужно учесть, что при увеличении плотности структуры материала, увеличивается и его способность пропускать тепло.
Минеральные утеплители кроме хорошей сохранности тепла, обладают отличными звукоизоляционными свойствами: они гасят звуки, не позволяя им проникнуть в помещение.
Производится минвата в виде плит или в рулонах. Плитами обкладываются стены, кровля, пол. Рулонный утеплитель пригоден для укрытия труб водоснабжения и отопления.
- Таблица теплопроводности утеплителей
- Утеплитель Басвул
- Керамический кирпич — Теплопроводность
Коэффициент теплопроводности материалов.
Ниже в таблице приведены значения коэффициента теплопроводности для некоторых материалов применяемых в строительстве.
Материал | Коэфф. тепл. Вт/(м2*К) |
Алебастровые плиты | 0,470 |
Алюминий | 230,0 |
Асбест (шифер) | 0,350 |
Асбест волокнистый | 0,150 |
Асбестоцемент | 1,760 |
Асбоцементные плиты | 0,350 |
Асфальт | 0,720 |
Асфальт в полах | 0,800 |
Бакелит | 0,230 |
Бетон на каменном щебне | 1,300 |
Бетон на песке | 0,700 |
Бетон пористый | 1,400 |
Бетон сплошной | 1,750 |
Бетон термоизоляционный | 0,180 |
Битум | 0,470 |
Бумага | 0,140 |
Вата минеральная легкая | 0,045 |
Вата минеральная тяжелая | 0,055 |
Вата хлопковая | 0,055 |
Вермикулитовые листы | 0,100 |
Войлок шерстяной | 0,045 |
Гипс строительный | 0,350 |
Глинозем | 2,330 |
Гравий (наполнитель) | 0,930 |
Гранит, базальт | 3,500 |
Грунт 10% воды | 1,750 |
Грунт 20% воды | 2,100 |
Грунт песчаный | 1,160 |
Грунт сухой | 0,400 |
Грунт утрамбованный | 1,050 |
Гудрон | 0,300 |
Древесина – доски | 0,150 |
Древесина – фанера | 0,150 |
Древесина твердых пород | 0,200 |
Древесно-стружечная плита ДСП | 0,200 |
Дюралюминий | 160,0 |
Железобетон | 1,700 |
Зола древесная | 0,150 |
Известняк | 1,700 |
Известь-песок раствор | 0,870 |
Ипорка (вспененная смола) | 0,038 |
Камень | 1,400 |
Картон строительный многослойный | 0,130 |
Каучук вспененный | 0,030 |
Каучук натуральный | 0,042 |
Каучук фторированный | 0,055 |
Керамзитобетон | 0,200 |
Кирпич кремнеземный | 0,150 |
Кирпич пустотелый | 0,440 |
Кирпич силикатный | 0,810 |
Кирпич сплошной | 0,670 |
Кирпич шлаковый | 0,580 |
Кремнезистые плиты | 0,070 |
Латунь | 110,0 |
Лед 0°С | 2,210 |
Лед -20°С | 2,440 |
Липа, береза, клен, дуб (15% влажности) | 0,150 |
Медь | 380,0 |
Мипора | 0,085 |
Опилки – засыпка | 0,095 |
Опилки древесные сухие | 0,065 |
ПВХ | 0,190 |
Пенобетон | 0,300 |
Пенопласт ПС-1 | 0,037 |
Пенопласт ПС-4 | 0,040 |
Пенопласт ПХВ-1 | 0,050 |
Пенопласт резопен ФРП | 0,045 |
Пенополистирол ПС-Б | 0,040 |
Пенополистирол ПС-БС | 0,040 |
Пенополиуретановые листы | 0,035 |
Пенополиуретановые панели | 0,025 |
Пеностекло легкое | 0,060 |
Пеностекло тяжелое | 0,080 |
Пергамин | 0,170 |
Перлит | 0,050 |
Перлито-цементные плиты | 0,080 |
Песок 0% влажности | 0,330 |
Песок 10% влажности | 0,970 |
Песок 20% влажности | 1,330 |
Песчаник обожженный | 1,500 |
Плитка облицовочная | 1,050 |
Плитка термоизоляционная ПМТБ-2 | 0,036 |
Полистирол | 0,082 |
Поролон | 0,040 |
Портландцемент раствор | 0,470 |
Пробковая плита | 0,043 |
Пробковые листы легкие | 0,035 |
Пробковые листы тяжелые | 0,050 |
Резина | 0,150 |
Рубероид | 0,170 |
Сланец | 2,100 |
Снег | 1,500 |
Сосна обыкновенная, ель, пихта (450…550 кг/куб.м, 15% влажности) | 0,150 |
Сосна смолистая (600…750 кг/куб.м, 15% влажности) | 0,230 |
Сталь | 52,0 |
Стекло | 1,150 |
Стекловата | 0,050 |
Стекловолокно | 0,036 |
Стеклотекстолит | 0,300 |
Стружки – набивка | 0,120 |
Тефлон | 0,250 |
Толь бумажный | 0,230 |
Цементные плиты | 1,920 |
Цемент-песок раствор | 1,200 |
Чугун | 56,0 |
Шлак гранулированный | 0,150 |
Шлак котельный | 0,290 |
Шлакобетон | 0,600 |
Штукатурка сухая | 0,210 |
Штукатурка цементная | 0,900 |
Эбонит | 0,160 |
Технологии укладки
Воздушные зазоры делаются в кирпичной кладке для уменьшения накопления влаги в стенах и снижения коэффициента теплоотдачи.
Прослойку воздуха в стенах правильно обеспечивают следующим образом:
- Раствором не заполняют воздушные зазоры толщиной до 10 мм между изделиями начиная с 1 ряда. 1 метр — распространенный шаг между зазорами.
- По типу фасада с вентиляцией зазор воздуха толщиной 25-30 мм оставляют по всей высоте кладки между теплоизолятором и кирпичом. При работе зимой отопительной системы температура в доме будет оставаться постоянной. Свойства стены сохранять тепло обеспечат постоянные воздушные потоки, которые будут проходить по предусмотренным воздушным каналам.
Постоянная циркуляция по каналам воздуха внутри кладки возможна, если она на последнем ряду не закрывается перекрытием из любых стройматериалов или стяжкой из раствора.
Для частного строительства важно, чтобы, не понеся больших расходов, добиться от кирпичной стены существенного снижения коэффициента λ.
Как рассчитать необходимую теплопроводимость?
Стены из газоблоков должны иметь достаточную ширину, чтобы в помещении сохранялось тепло. Если сделать их слишком тонкими, то здание будет выхолаживаться. Чтобы не столкнуться с такой проблемой, необходимо правильно выполнить расчеты. Не допустить ошибку помогают правила СНИП, которые имеются для каждого региона страны. Влажностный режим бывает 3 типов:
- Влажный – 1.
- Нормальный – 2.
- Сухой – 3.
Понять, в каком регионе проживает человек, поможет специальная карта:
Чем выше уровень влажности воздуха в регионе проживания, тем толще и плотнее должны быть стены, так как сырость способствует быстрым теплопотерям.
Без учета коэффициента теплопроводности газобетонного блока невозможно правильно определить толщину стены строящегося здания. Чтобы точно высчитать толщину стен, прибегают к специальной формуле. Она выглядит следующим образом:
T=Rreg x λ, где:
- T – это толщина стены.
- Rreg – необходимое сопротивление по теплопередаче для разных городов РФ.
- λ — это коэффициент теплопроводности для газоблока (зависит от его плотности).
Пользоваться этой формулой очень просто. Практический пример:
Rreg для Москвы – 3,28. λ для газоблока марки D500, 5% влажности – 0,14. Итого: Т= 3,28 x 0,147 = 0,48.
Значит, толщина стены в Москве с учетом теплопроводности выбранного газоблока должна составлять не менее 48 см.
Для примера приведена минимальная толщина стен из газоблоков марки D500 для разных городов России:
- Москва – 35 см.
- Новосибирск – 45 см.
- Якутск – 65 см.
Чем выше показатели влажности в регионе и чем там холоднее, тем толще должны быть стены. В противном случае добиться качественной теплоизоляции не удастся.
Неопытные строители часто возводят слишком тонкие стены, руководствуясь рекомендациями производителей газоблоков, которые не учитывают множество факторов в виде мостиков холода, климатических особенностей региона и пр.
Специалисты в этом вопросе приходят к единому мнению: стена из газобетона не должна быть тоньше 350 мм.
Показатели влажности ячеистого бетона
Европейский и Международный комитеты по бетону, проходящие в 1977 году в Лондоне, в связи с существенными различиями в применении в строительстве и физико-техническими свойствами между бетонами на легких заполнителях и ячеистыми бетонами, создали рабочую группу по ячеистому бетону, которая выявила, что эксплуатационная влажность – его важнейший показатель. Значение влажности ячеистого бетона составляет 4-5% от его массы и устанавливается примерно через 2-3 года. Пределы значения отпускной влажности — 25 – 35%.
Способность внутренней влаги передавать тепло обуславливает основную теплопередачу. Ячеистый бетон имеет свойство линейно повышать теплопроводность, по мере увеличения такого показателя как сорбционное влагопотребление до 15%. Дальнейший рост этого показателя влияет уже несущественно.
Есть ряд особенностей эксплуатации ячеистого бетона для того, чтобы получать заявленную теплопроводность. Так, например, обязательно использовать грунтовку для предохранения стен от увлажнения. На наружных стенах грунтовка должна быт паропроницаемая.
Проектирование стен осуществляется в зависимости от климатической зоны и режима влажности помещений. Эти показатели определяются СНиПом II-3-79**. Норма для условий эксплуатации согласно СНиПу II-3-79**:
описание различных пород, необходимость таблицы коэффициентов теплопроводности
Древесина — экологически чистый и практичный материал. Дерево активно применяется для внутренней отделки помещений. Материал также используется в строительстве загородных домов и заведений для туристов, в которых большую роль играет экологичность здания. При строительстве важно учесть теплопроводность дерева и многие другие параметры. Внутренняя отделка тоже требует внимания к характеристикам, ведь породы по-разному реагируют на тепло и влагу.
Разновидности и использование древесины
В строительстве применяются разнообразные породы древесины, которые принято разделять на хвойные и лиственные. К хвойным относятся такие виды:
- Сосна. Прочный и практичный материал для выполнения строительных работ. В нем собрано большое количество смолы, за счет чего он справляется с излишней влагой, при этом не поддается коррозии при сушке.
- Ель и пихта. Довольно прочные, но сучковатые материалы. Имеют приятый оттенок и незначительное количество смолы. При строительстве применяются как материал для элементов второстепенной важности.
- Кедр. Невзирая на то, что материал мягкий, он довольно прочный.
Лиственные породы делятся на мягкие и твердые. Это такие виды:
- Дуб. Высококачественный материал, обладающей высокой прочностью и надежностью. У дуба натуральный и приятный для глаза цвет. Как правило, он применяется для изготовления мебели, при возведении лестничного марша. Наиболее роскошно выглядит настоящий мореный дуб (выдержанный в воде около двух лет).
- Береза. Не столь прочный материал, зато однородный, за счет чего имеет максимально четко выраженную структуру. Из этого вида древесины получается качественная фанера, которая легко окрашивается и полируется.
- Осина. Слишком мягкий, но при этом практически не имеющий сучков вид древесины. Легко поддается обработке, но мелкие детали из осины делать не стоит.
- Липа. Широко применяется в производстве мебели. Прекрасно сохраняет свой первозданный вид даже после сушки. Липа устойчива к влаге.
- Клен. Довольно практичный материал, но весьма быстро рушится под воздействием влаги и вредителей. Неплохо красится, обрабатывается и проклеивается. Широко применяется как в строительстве, так и в изготовлении мебели.
- К лиственному типу также относится красное дерево. Красивый, дорогой и прочный материал. Чаще всего используется для элитного мебельного производства.
Чтобы выбрать подходящую породу, важно изучить таблицу теплопроводности древесины.
Достоинства материала
Строительство с использованием древесины имеет свои преимущества и недостатки. Главными плюсами при выборе такого материала будут:
- Экологичность. Самый весомый аргумент в пользу древесины — экологическая чистота. Некоторые современные материалы могут выделять пары тяжелых металлов и прочих химических элементов, что пагубно повлияет на здоровье жильцов дома.
- Ремонтопригодность. Части, сделанные из древесины, будет довольно легко отремонтировать в случае поломки или износа.
- Прочность и устойчивость ко многим внешним факторам, что делает долгим срок службы изделий из древесины. При правильной обработке этот материал будет безотказно служить долгие годы.
- Простота обработки.
- Плохая теплопроводность.
- Хорошие звукоизоляционные свойства.
Довольно обширный список. При этом маленькое число недостатков:
- Сильная зависимость свойств материала от того, в каких условиях росло дерево. Выбрать из-за этого качественный экземпляр бывает трудно.
- Изменения размеров из-за воздействия влажности и сухости. Но этот недостаток легко поправим обработкой.
- Легкая воспламеняемость.
Нельзя не учитывать высокую стоимость, связанную со сложностью добычи высококачественной древесины.
Влияние теплопроводности
От коэффициента теплопроводности древесины напрямую зависит ее способность сохранять температуру в помещении. Лидирующую позицию по сбережению тепла занимает кедр. Немного отстают ель, лиственница и другие сосновые породы. Все зависит напрямую от размера бревна (его диаметра), влажности материала, подгонки и утепления стыков.
Строение из сосны толщиной всего в 10 см можно сравнить со стеной из кирпича шириной в 58 см или железобетонной — 113 см. Правильно возведенный из дерева дом будет довольно компактным и теплым. Поэтому при строительстве нужно учитывать таблицу теплопроводности дерева.
Максимально тяжелое хвойное дерево лиственница — победитель сосны по теплопроводности. Она имеет более низкий коэффициент.
Теплопроводность дерева, позволяющая сохранять тепло, — не единственное достоинство лиственницы. Структура этого материла устойчива к влаге и довольно красива.
Сосна — наиболее распространенное и часто применяемое для строительства дерево. Более того, с финансовой стороны вопроса это еще и максимально бюджетный вариант. Сосна легко поддается обработке, способна украсить дом или баню своим внешним видом.
Теплопроводность кирпичной стены
Теплопроводность – один из важнейших показателей, характеризующих качество возводимого сооружения. И это неудивительно: ведь от этого коэффициента зависят не только затраты на отопление помещений, но и степень комфортности проживания в доме. Также в строительных расчетах часто фигурирует коэффициент теплосопротивления (сопротивление теплоотдаче), обратный теплопроводности (чем выше первый, тем ниже второй, и наоборот).
Теплопроводность сооружения зависит от показателей используемого вида кирпича, от параметров раствора, типа кладки, применяемых строительных технологий и утепляющих материалов.
Коэффициент теплопроводности кирпичей
Данный коэффициент обозначается буквой λ и выражается в W/(m*K).
Показатель λ достаточно широко варьируется, в зависимости от типа кирпичей и способа их изготовления. В основном, на данный коэффициент влияют материал кирпича (клинкерный, силикатный, керамический) и относительное содержание пустот. До 13% пустотности кирпичи считаются полнотелыми, выше – пустотелыми. По уменьшению коэффициента λ линейка строительной продукции будет выглядеть следующим образом:
- Клинкерный кирпич λ= от 0,8 до 0,9. Этот тип стройматериалов не предназначен для строительства утеплённых стен и чаще используется для изготовления полов и мощёных дорог.
- Силикатный кирпич полнотелого типа λ= от 0,7 до 0,8. Чуть ниже, чем у предыдущего типа, но строительство стены с его использованием требует серьёзных мер по утеплению.
- Керамический кирпич полнотелый λ= от 0,5 до 0,8 (в зависимости от сорта).
- Силикатный, с техническими пустотами λ= 0,66.
- Керамический кирпич пустотелого исполнения λ= 0,57.
- Керамический кирпич щелевого типа λ= 0,4.
- Силикатный кирпич щелевого типа – показатель λ аналогичен керамическому щелевому (0,4).
- Керамический поризованный λ= 0,22.
- Тёплая керамика λ= 0,11. Имея отличные показатели теплосопротивления, тёплая керамика уступает прочим видам кирпичной продукции по прочности, и поэтому применение её ограничено.
Важно при расчёте также учитывать, что для различных климатических регионов сопротивление теплоотдаче материалов будут варьироваться, в достаточно широких пределах Информацию о соотнесении теплоотдачи с климатическими параметрами, можно почерпнуть в СНиПе 23-02-2003.
Теплопроводность кладки
Теплосопротивление кирпичей является важнейшим коэффициентом и в ряде случаев является определяющим параметром при проектировании здания и выбора кладки. Вместе с тем, сопротивление
теплоотдачи сооружения зависит не только от показателя λ используемых кирпичей, но и от применяемого строительного раствора.
Наиболее частым является случай, когда теплосопротивление раствора существенно ниже, чем сопротивление кирпича.
Так, коэффициент теплоотдачи раствора на основе цемента и песка равен 0,93 W/(m*K), а цементно-шлакового раствора – 0,64.
Путем суммирования коэффициентов сопротивления теплоотдаче кирпича и раствора разработаны специальные таблицы коэффициента теплопередачи, которые можно посмотреть в ГОСТе 530-2007. Ниже приведена выдержка из таблицы:
Таблица – Теплопроводность кладки
Тип кирпича | Тип раствора | Теплоотдача |
Глиняный | Цементно-песчаный | 0,81 |
Цементно-шлаковый | 0,76 | |
Цементно-перлитовый | 0,7 | |
Силикатный | Цементно-песчаный | 0,87 |
Керамический пустотный 1,4т/м3 | Цементно-песчаный | 0,64 |
Керамический пустотный 1,3т/м3 | 0,58 | |
Керамический пустотный 1,0т/м3 | 0,52 | |
Силикатный, 11-ти пустотный | Цементно-песчаный | 0,81 |
Силикатный, 14-ти пустотный | 0,76 |
Расчет стены
Для того, чтобы использовать коэффициент теплосопротивления кирпичной стенки на практике, необходимо воспользоваться следующей формулой:
r = (толщина кладки, м)/(теплоотдача, W/(m * K)),
где r – сопротивление теплоотдаче кирпичной стены. При расчетах также необходимо учитывать степень влажности помещения и климатический регион.
Уменьшение коэффициента теплоотдачи стены
В ряде случаев коэффициент λ оставляет желать много лучшего. К тому же нарушение технологии строительства может привести к изменению теплоотдачи в большую сторону. Если применять жидкий раствор при возведении стены из щелевого кирпича, то связующий материал проникнет в пустоты и отрицательно скажется на показателях теплосбережения (сопротивление теплопередаче уменьшится).
Что делать, чтобы увеличить сопротивление теплоотдаче?
Методы уменьшения теплопередачи стены:
- Применение более энергосберегающих материалов (кирпичей с большей степенью пустотности).
- При строительстве из щелевого кирпича применять густой раствор.
- Прокладывание во внутреннем слое теплоизолирующих материалов. На рынке представлен огромный выбор теплоизоляции. Из наиболее популярных можно назвать стекло- и минераловатные материалы, пенополистирол, керамзит и другие. При применении утеплителей необходимо обеспечить пароизоляцию стены, чтобы избежать разрушения материалов.
- Оштукатуривание поверхности.
Выбираем кирпич: о «теплых» и «холодных» стройматериалах
Кирпич обладает долговечностью, механической прочностью, морозостойкостью, хорошими звукоизоляционными свойствами и безопасен с точки зрения экологии. Все эти качества делают кирпич одним из самых востребованных стройматериалов на рынке. Но, есть и ещё одно важное свойство кирпича — его теплотехнические параметры. Ведь именно теплопроводность кирпича, из которого выложены стены, влияет на микроклимат помещения в этом здании.
Немного физики или от чего зависит теплопроводность кирпича
Теплопроводность — это способность материала проводить тепло через свой объём. Количественно выражается она коэффициентом теплопроводности (λ, «лямбда») и определяется в Вт/м². Проще говоря, чем меньше теряется энергии, тем лучше, а значит, чем меньше коэффициент λ, тем «теплее» материал. Фактически на теплопроводность влияет плотность кирпича. Чем она меньше, тем меньше теплопроводность. Самый прочный и тяжелый клинкерный кирпич имеет самый высокий коэффициент λ, а лёгкий и менее прочный керамический, соответственно, самый низкий коэффициент теплопроводности.
Виды кирпича и их коэффициент проводимости тепла
В строительстве могут быть использованы разные виды кирпича. Перед тем, как приступить к возведению дома, имеет смысл узнать, насколько «теплыми» или «холодными» являются наиболее востребованные виды этого керамического материала.
- Клинкерный — самый прочный и тяжелый кирпич с высоким коэффициентом теплопроводности — 0,8-0,9.
- Силикатный кирпич — легкий кирпич, имеет меньший коэффициент теплопроводности — 0,4.
- С техническими пустотами — 0,66.
- Полнотелый кирпич — 0,8.
- Щелевой кирпич — 0,34-0,43;
- Кирпич поризованный — 0,22;
Теплопроводность кирпича может меняться в зависимости от его объема, плотности и расположения пустот. Специалисты рекомендуют применять в строительстве для лучшего сохранения тепла материалы с низкой теплопроводностью. Для того чтобы уберечься от холода или спастись от жары, при строительстве вашего дома необходимо учитывать теплопроводность кирпича. Ведь мы строим наши дома для того, чтобы жить в нём с комфортом.
Понятие теплопроводности
Она является интенсивной физической величиной, то есть величиной, которая описывает свойство материи, не зависящей от количества последней. Интенсивными величинами также являются температура, давление, электропроводность, то есть эти характеристики одинаковы в любой точке одного и того же вещества. Другой группой физических величин являются экстенсивные, которые определяются количеством вещества, например, масса, объем, энергия и другие.
Противоположной величиной для теплопроводности является теплосопротивляемость, которая отражает способность материала препятствовать переносу проходящего через него тепла. Для изотропного материала, то есть материала, свойства которого одинаковы во всех пространственных направлениях, теплопроводность является скалярной величиной и определяется, как отношение потока тепла через единичную площадь за единицу времени к градиенту температуры. Так, теплопроводность, равная одному ватту на метр-Кельвин, означает, что тепловая энергия в один Джоуль переносится через материал:
- за одну секунду;
- через площадь один метр квадратный;
- на расстояние один метр;
- когда разница температур на поверхностях, находящихся на расстоянии один метр друг от друга в материале, равна один Кельвин.
Понятно, что чем больше значение теплопроводности, тем лучше материал проводит тепло, и наоборот. Например, значение этой величины для меди равно 380 Вт/(м*К), и этот металл в 10 000 раз лучше переносит тепло, чем полиуретан, теплопроводность которого составляет 0,035 Вт/(м*К).
Материалы из бетона с добавлением пористых заполнителей
Коэффициент теплопроводности материала позволяет использовать последний для постройки гаражей, сараев, летних домиков, бань и других сооружений. В данную группу можно отнести:
- Пенобетон. Производится с добавлением пенообразующих веществ, за счет которых характеризуется пористой структурой с плотностью 500-1000 кг/м3. При этом способность передавать тепло определяется значением 0,1-0,37Вт/м*К.
- Керамзитобетон, показатели которого зависят от его вида. Полнотелые блоки не имеют пустот и отверстий. С пустотами внутри изготавливают пустотелые блоки, которые менее прочные, нежели первый вариант. Во втором случае теплопроводность будет ниже. Если рассматривать общие цифры, то плотность керамзитобетона составляет 500-1800кг/м3. Его показатель находится в интервале 0,14-0,65Вт/м*К.
- Газобетон, внутри которого образуются поры размером 1-3 миллиметра. Такая структура определяет плотность материала (300-800кг/м3). За счет этого коэффициент достигает 0,1-0,3 Вт/м*К.
Что такое коэффициент теплопроводности
Физический смысл коэффициента теплопроводности — это количество тепла, которое проходит через образец единичного объема за одну секунду при разнице температур в один Кельвин (градус Цельсия). Единица измерения — Вт/(м °К), обозначение — λ, k, ϰ.
Чем выше значение коэффициента, тем большей способностью к передаче тепла обладает материал. В абсолютном вакууме λ=0, максимальный — у алмаза и графена, применяемого в наноразработках.
У бетона значение коэффициента теплопроводности находится в пределах 0,05 -2,02 Вт/(м °К) в зависимости от плотности и влажности материала. У ячеистого автоклавного бетона марки М150 λ=0,055 Вт/(м °К), а тяжелые бетоны М800-1000 характеризуются показателем 2,02 Вт/(м °К).
В строительстве при расчете конструкций на сопротивление теплопередаче используют таблицу с точными значениями коэффициента. Его указывают для трех состояний материала:
- в сухом виде;
- при нормальной влажности;
- при повышенной влажности.
Теплотехнический расчет проводят в соответствии с условиями эксплуатации бетона.
От чего зависит величина коэффициента
Коэффициент теплопроводности бетона определяют опытным путем. Поскольку у материала неоднородная структура, то величина непостоянна и носит условный характер.
Параметры, от которых зависит показатель:
- Плотность. Тепловую энергию передают друг другу частицы, поэтому чем ближе они расположены, тем быстрее этот процесс. Соответственно, рыхлые материалы с меньшей плотностью способны лучше противостоять теплопередаче.
- Пористость материала. Тепловой поток перемещается сквозь толщу монолита, часть которого составляют воздушные пустоты. Теплопроводность воздуха очень мала — 0,02 Вт/(м °К). Чем больше занятый воздухом объем, тем коэффициент λ ниже.
- Структура пор — размеры и замкнутость. Мелкие полости снижают скорость передачи энергии, в то время как в крупных сообщающихся отверстиях теплообмен совершается конвекционным путем, увеличивая тем самым общую теплопередачу.
- Влажность. Коэффициент теплопроводности воды 0,6 Вт/м К, это достаточно большой показатель. Проникая в полости бетона, влага уменьшает способность материала сохранять тепло.
- Температура. Чем она у вещества выше, тем быстрее движутся молекулы. Зависимость от температуры линейная, выражается формулой λ=λо х (1+b х t), где λ и λо — искомый и начальный коэффициенты теплопроводности, b — справочная величина, t — температура в градусах.